Upgrading from M version 0.2: An application-based method for practical estimation, evaluation and uncertainty characterization of natural mortality

Jason M. Cope ${ }^{1}$

Owen S. Hamel
Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
${ }^{1}$ Corresponding author: jason.cope@noaa.gov

Abstract

Natural morality (M) is a notoriously difficult population parameter to estimate, yet it is also one of the most important measures of life history that sets, as Beverton and Holt called it, "the course of events". Stock assessments that include this parameter often show great sensitivity to its value, reflecting the need to not only define its value, but also the uncertainty inherent in its estimation. Direct measurement of natural mortality is often limited to resource intensive tagrecapture studies. Indirect measures are more often used, and are built on life history theory, relating natural mortality to traits such as age, size, maturity and reproductive condition (or just assuming 0.2). The Natural Mortality Tool attempts to accumulate several empirical estimators of M into one application. Users simply input life history values to obtain estimates of natural mortality. These estimates can be taken individually or can be combined into a weighted density function that can be used to develop an M prior that integrates uncertainty across several estimates. Comparing estimators can also reveal inconsistencies in life history values that may lead to further refining of basic biological understanding. Two examples are used to demonstrate tool functionality and highlight general recommendations on implementation. Making these estimators and the development of uncertainty in estimating natural mortality more widely available hopefully supports transparent and defensible decision-making on the treatment of this important population parameter.

Keywords: Life history, Shiny, Priors, Uncertainty, Stock Assessment

1. Introduction

Life and death are binary moments for organisms. While the individual is considered either dead or alive (if questionably useful; Du et al. 2018), mortality is a population process over a given time period (e.g., 10% of the population has died over a year). The causes of mortality are numerous and intertwined, and include starvation/malnutrition (Fey et al. 2015; Hill et al. 2020), disease (Cigler et al. 2020; Stenkat et al. 2013), predation (Hill et al. 2020), competition or defense (Lenting et al. 2019; Stenkat et al. 2013), environmental conditions (Fey et al. 2015), senescence (Reznick et al. 2002), poor decision-making (Lendrem et al. 2014) and/or bad luck (e.g., black swan events; Hoag 2003; Anderson et al. 2017).

Mortality is a key component of basic population modelling, as births minus deaths defines population growth (in a closed population) for a given time period (Ebert 1999). While mortality can be expressed as a finite or discrete rate (i.e., a percentage), it is often expressed as an exponential instantaneous (i.e., continuous) rate of change. Using instantaneous rates provides mathematical convenience and flexibility to express at what point mortality occurs (Ebert 1999).

When modelling marine fish populations, it is common to distinguish mortality due to human extraction (i.e. fishing) from other sources. This quantification is possible when fishing removals (landings plus dead discards) are monitored, and results in the following common treatment: total mortality $(Z)=$ natural mortality $(M)+$ fishing mortality (F), where natural mortality is the remaining predation combined with any other sources of mortality (Sparre and Venema 1989). This separation of mortality components is particularly useful for fisheries management, as the F contribution can be compared to a reference level of fishing ($F_{r e f}$) that indicates whether overfishing is occurring (e.g., $F>F_{\text {ref }}$ indicates overfishing: Cordue 2012).

While there are advanced treatments to remove other predation sources from M (often called M2 (Pope et al. 2021)), M in this paper includes all sources of mortality excluding fishing mortality. In many of the analytical approaches used to estimate stock status and other important fisheries management metrics under conditions of varying data and resource availability (Cope et al. in prep), M is an essential input parameter. In those models, M is widely recognized as both a highly influential parameter in stock assessment modelling and in defining stock productivity and subsequent fishery reference points, but is difficult to directly measure in marine organisms (Maunder et al., this issue; Punt et al. 2021). This is particularly true for populations with individuals that move around, do not stay in the sampling area and/or are in habitats that make routine monitoring a challenge. Direct estimation in age-structured models is possible, but requires adequate biological composition data and an understanding of the functional form of fishery selectivity (Lee et al. 2011). Mark-recapture studies (Chapman 1961; Seber 1982) or agebased sampling of cohorts through time (Chapman and Robson 1960; Schnute and Haigh 2007; Thorson and Prager 2011) are other direct ways to measure mortality. In some instances, M can be directly estimated separate from Z (Hoenig et al. 1998; Jiang 2005; Jiang et al. 2007), though it is common that Z rather than M is estimated, thus F would be required to derive M from Z (i.e., $\mathrm{M}=\mathrm{Z}-\mathrm{F}$).

In one of the most famous and cheeky derivations of M, John Pope in 1975 showed the evolution of a question mark into an often assumed value of $M=0.2$ (Figure 1 of Anderson 2015 and Pope et al. 2021). Sadly, 0.2 was indeed a commonly used default value when no other M value was available. Since then, a host of empirical approaches have been developed to allow the indirect estimation of M. These approaches have been well described and evaluated elsewhere (Kenchington 2014; Maunder et al. this issue; Then et al. 2015; Vetter 2008), and while there are
some approaches that are favored over others, having ready access to the many empirical estimators of M allows for more examination and comparison of these estimators under a variety of situations. This paper describes a free software application with a graphical user interface (GUI), the Natural Mortality Tool, designed to be a practical, user-friendly way to explore a wide variety of empirical M estimators. Available methods, tool features, and suggested rules for use are provided herein to demonstrate the range of tool functionality and how it can support both point estimation and uncertainty analysis in this critical model parameter.

2. The Natural Mortality Tool (NMT)

The NMT ${ }^{1}$ is written in the Shiny (Chang et al. 2021) package for R (R Core Team 2021), which allows for the creation of interactive graphical user interface (GUI) web-based applications. The GUI is a key feature of this tool, as it allows for user interaction and real-time response based on user input. It also allows for saving output objects and images. It does not require the user to know how to formally use R. The code can also be downloaded from the GitHub repository ${ }^{2}$ for running the tool offline, where user installation instructions are found. The NMT currently has 23 different estimators of M based on 14 possible inputs (all of which can be expanded as new methods develop), with an additional input available for unlimited user supplied M values (e.g., 0.2). This provides a plaform to compare M values generated from each estimator and/or user supplied value. Not all inputs need to be entered, only those that are available to the user, and thus outputs will only be provided for those methods fully specified by those inputs. The NMT has links that open windows to show associated references and a table (Table 1) of the inputs needed for each method. Of the 23 estimators (22 provide a constant M across ages and 3

[^0](including two that also provide a constant M value) provide age-specific M estimates), one is based on the R library FishLife (Thorson et al. 2017; Thorson 2019), six are based on the fishmethods R library (using the function M.empirical(); Nelson 2021), and the remaining are coded within the NMT. The latest version of each of these estimators are used, with updates and additions to the M estimators an ongoing point of tool maintenance. The authors welcome further recommendations of additional M estimators to include, as well as comments on the usefulness of those estimators currently available, via issues reporting on the GitHub repository.

2.2 Empirical Estimators in the NMT

Empirical estimation of M is generally based on relationships between other, easier to measure life history parameters. Beverton and Holt (1959) were early investigators on building relationships between M and growth parameters, maximum age, and reproductive biology (Beverton 1992; Prince et al. 2015). Subsequent work has built on those relationships and developed multi-parameter relationships to estimate M (Charnov et al. 2013; Chen and Watanabe 1989). By entering just the scientific name of the species, one can access the estimate of M from the FishLife library that applies a taxonomically-structured multivariate model to information found in the FishBase database (Thorson et al. 2017; Froese and Pauly 2021).

Maximum age is one of the most commonly used values to build relationships to M, as it makes intuitive sense that higher life expectancies must mean a lower population mortality rate (Hamel and Cope, this issue; Maunder et al., this issue; Then et al. 2015). While using maximum age tends to be preferred, establishing the maximum age (not necessarily the maximum age ever recorded) of a population is not always straightforward or available (Hamel and Cope, this issue; Maunder et al., this issue). Maximum age can be affected by ageing error and/or sampling agetruncated populations (Hamel and Cope, this issue; Hoenig 2017). Thus, while possibly easier to
measure than M, maximum age-- and the meta-analytical estimators based on them-- still suffers from uncertainty that needs careful consideration. There are currently six methods in the NMT that can use longevity in the estimation of M (the Chen and Watanabe (1989) method can take any age, as it provides age-specific M estimates, but longevity is recommended when using one age value), with three combining maximum age with other parameters in the estimator (Table 1).

Parameters of the Beverton-Holt (1959) version of the von Bertalanffy growth function (L_{∞}, k and t_{0}) are also commonly used in empirical M estimators. The process of accounting for metabolism and its allocation to maintenance, growth, reproduction, and mortality links these processes and are foundational to life history theory (Boukal et al. 2014; Enberg et al. 2012; Essington 2001). The individual growth coefficient k is most directly related to M (even forming what is considered a dimensionless ratio within or across taxa, M / k; Beverton and Holt 1959; Charnov et al. 1993; Jenning and Dulvy 2008; Prince et al. 2015), though several methods (Table 1) also require either the theoretical age at size $0\left(t_{0}\right)$ or the average maximum size $\left(L_{\infty}\right)$. While less directly related to M than maximum age, the von Bertalanffy growth parameters tend to be easier to estimate than maximum age (though issues of ageing error, fishery selectivity and sampling, along with the correlation among the three parameters, can also make this difficult, especially for k and t_{0}), thus providing, in some cases, a more accessible method when maximum age is poorly understood. There are currently 11 methods in the NMT that use von Bertalanffy growth parameters, three of which use only k, three of which use both k and L_{∞} on their own or with length information, and five that use other parameters, including three of which combine with age (Table 1). One of the growth-based methods also includes water temperature as it may affect metabolism and behavior thus indirectly influencing M (Pauly 1980).

The original von Bertalanffy growth function was derived using weight (W) (von Bertalanffy 1938; Essington 2001), but is converted to length using the common power weightlength relationship of $W=a L^{b}$. Thus, weight (either wet or dry) can also be related to M carrying over the logic used in those relationships derived from length (Pauly 1980). The NMT contains four weight-based M estimators, two of which use weight only, two of which include temperature, and one that uses the weight-based von Bertalanffy equation ($W_{\infty}, k_{w} ;$ Table 1).

Reproduction is also part of the energy allocation equation, and the onset of reproductive years usually dictates when growth begins to slow (Enberg et al. 2012). This interplay between growth and reproduction also makes the length or age at maturity another candidate as an estimator of M (Jensen 1996). There are three estimators that use age at maturity as an input, with only one of them adding an additional parameter (k) in the equation (Table 1).

The remaining method uses the allometric concept of growth and reproduction as related to mortality and interprets the M relationship through the ratio of reproduction (measured by the gonad weight) and fish weight to express reproductive effort (Gunderson 1997; Hamel 2015). The gonadosomatic index (GSI) is a metric not often sampled, thus represents a unique, often unavailable, but relatively easy to measure value as an option to estimate M.

The tool responds to user inputs as they are included, producing both a figure of outputs across the different methods and a simple table to see the actual quantities illustrated in the plot. Both the table (as a .csv file) and the figure are downloadable with a click of the button, as is an R object that contains all user inputs and the resulting M values. This object is especially notable as it reserves a record of the exact inputs used to produce the M values, in addition to an object that can be imported into R .

2.3. Accounting for uncertainty in the NMT

Sources of uncertainty in M can be expressed in at least two main ways: among estimators and within estimators. The default is to assume each estimator produces a point estimate, though there is an option to include either lognormally or normally distributed error with a userspecified amount of error. Lognormally distributed error is more appropriate for most estimators, as M itself is a rate parameter that occurs in the exponent when relating to population size. Estimated uncertainty is only empirically available for some methods and requires the initial dataset for calculation (Hamel 2015). Instead, an option for user input uncertainty is included and assumed the same for each estimate for tool simplicity. Future modifications to the tool could consider method-specific uncertainty, but may also overly complicate the tool. One could also go back and attempt to calculate uncertainty from the original data set used to create a given empirical relationship and input that value into the NMT. Further uncertainty can also be explored through changing input values (e.g., what if longevity is 60 instead of 50?).

Once the estimators are activated via parameter inputs and additional variance included, the user can navigate to the second tab ("Composite M: User weighted") to create a custom distribution of M that combines all M estimators and associated uncertainty into a composite distribution (Figures 2 and 3). A user-specified method-weighted (i.e., percent contribution) approach is used to construct the composite distribution of M. This composite can then be used in a Monte Carlo approach for resampling or used to specify a prior on M. Allowing for userbased weighting of each method addresses multiple issues:

1. Input influence: Multiple methods may use the same input (e.g., longevity), thus causing unequal input influence when comparing M estimates across methods if all methods are equally weighted. For instance, if there are three methods that use only longevity and one
that uses GSI, weighting each method equally upweights the influence of the longevity input purely based on the number of estimators used. One solution is to downweight each longevity-based estimator by two-thirds so the overall weighting of each adds up to one. The user gets to determine the combination of weightings based on their preferences. The default weightings in the NMT are a mix of applying the above rational to avoid outsized input influence and starting some estimators at a weight of 0 as they often produce outliers (see next issue).
2. Method removal: Included in the user decision of how to weight each method is whether to include each method at all. There are many reasons why some methods may produce highly questionable values (e.g., extreme outliers) when applied in certain situations. The user may decide to ignore that method by setting the weighting to 0 . Recommendations of using some estimators over others (e.g., longevity-based estimators are preferred over growth-based estimators; Then et al. 2015) may also be a reason to omit certain estimators.
3. Custom priors: The custom combination of weightings across all M estimators and any additional uncertainty the user may have included creates the composite M distribution. The construction of the composite is first done by setting X number of total composite samples (user defined, but the default is one million). The individual method weightings are then turned into standardized weights (individual method weight/sum of all method weightings) to give the Y_{i} number of samples from the total number of X samples for each estimator, where i is the estimator (e.g., 200000 out of 1000000 samples for estimator 1) and $X=\Sigma Y_{i}$. If there is no additional uncertainty added to the methods, then the point estimate is replicated Y_{i} times for each method i. If there is a specified error distribution
(either lognormal or normal), then a Y_{i} random sample is taken for each distribution. A final option to tune the bandwidth, with values greater than 1 causing more diffuse distributions, is offered for further M distribution customization.

Once the user specifies the composite weightings, number of samples, and choice of density bandwidth (which smooths out the density distribution and allows the user to make more diffuse priors if they so choose), a plot of both the component points (left column plots in Figure 2) or distributions (left column plots in Figure 3) and the overall density distribution (right column plots in Figures 2 and 3) are provided for download and examination. R objects that contain the details of the sampling of each method and the final composite M values by methods are also provided for download.

A second approach to characterizing uncertainty (third tab: "Composite M: Inverse variance") that develops a lognormal Bayesian prior distribution from multiple methods is also available (Hamel, 2015). This approach essentially multiplies the individual distributions together, and thus weights the alternative methods based upon the inverse of the variance (or 1 divided by the square of the input standard deviation). Additional user-specified weights, as presented previously, can also be included. Where individual distributions are bimodal, this approach will provide a single central mode, in contrast to the treatment of biomodal results for the first approach. Thus the two approaches to characterizing uncertainty represent distinct views of the information each distribution provides relative to the other distributions included. The tool offers users their choice of either or both.

Overall, the point estimates (from the first tab) and/or the composite distributions and priors (from the second and third tabs) offer different ways of processing the estimates from each
method. Each can then be used to parameterize the variety of stock assessment methods that require natural mortality as an input, specify operating models used in simulation testing, or any other application that needs a value or distribution of M values.

3. Benefits of and best practices when using the NMT

The intent of the NMT goes beyond just easy access to the numerous M estimators. When considering the vagaries of inputs available for any given method, and the life history theory that underpins these methods, it is advantageous to be able to look across multiple M estimators and consider how they can be applied collectively to reflect uncertainty in M for a given population. To demonstrate and highlight some of the recommended uses of the tool, applications are presented using two rockfish (genus Sebastes) species, yelloweye (Sebastes ruberrimus) and gopher (S. carnatus) rockfishes (Table 2).

Comparing life history inputs across methods often results in a variety of possible M values, including the potential for large discrepancies in estimates (Figure 1). But which should be used? Considering the yelloweye rockfish example (Figure 1A), the method-specific estimates group roughly by those using longevity and those using either growth or maturity, with the latter group estimating higher M values. These groups result in a bimodal composite distribution of M under default method weightings (Figure 3A).

Given the previously stated difficulties in defining a representative longevity estimate, uncertainties in growth parameters, and potential variability in parameter relationships across taxa, seeing such discrepancies offers an avenue to explore these differences. One could ask the question "how much do I need to change the longevity input to achieve M values near the estimators using growth and maturity?" In this example, longevity needs to be lowered to a value of ~ 50 years to match the growth and maturity estimates of M. This is well outside the
uncertainty envelope of longevity for yelloweye rockfish. One could do a similar exploration with the von Bertalanffy values, which would take a 50% reduction in the k value to achieve M values as low as the longevity estimators. The differences in the estimators may be due to departures in the generalized life history relationships for a given taxa or species. For example, some Sebastes species tend to grow to near maximum size $\left(L_{\infty}\right)$ quickly relative to their lifespans, and therefore, as noted in Beverton (1992), the standard cross-taxa relationship between k and M may be expected to be biased high for species, like some Sebastes, that grow quickly to asymptotic size. In contrast to the yelloweye rockfish results, there is less difference among the estimates of M for gopher rockfish among estimator groups, but still notable variability among individual methods that results in a bimodal distribution (Figure 3B).

The treatment of the resultant bimodal distributions should depend on the source of the bimodality. For the yelloweye example, there are two modes comprised of different estimators: one from longevity estimators and the other from growth and maturity (left plot of Figure 3A). Given neither could be resolved through initial confirmation of poor estimations of any of the inputs, one perspective is the two modes represent distinct distributions of M that represent alternative hypotheses. The expression of alternative hypotheses in life history parameters is a standard approach to characterize uncertainty in population modelling and defining "states of nature" for decision analysis (Punt and Hilborn 1997). In this approach, there is no requirement to assume equal probability of these alternative hypotheses, and requires separating out methods into each hypothesis to construct each distribution. For the case of yelloweye rockfish, the higher M mode consists of growth and maturity-based estimators, but as previously stated, clearly incompatible with realistic longevity expectations. Figure 3A (right plot) shows a treatment that uses the methods weighting approach (second tab in the NMT) to downweight to zero all
estimators except the longevity-based estimators, isolating the lower M mode. For the gopher rockfish example, there is no grouping distinction or obvious reasoning to exclude certain estimators, so one may choose to use the overall bimodal composite distribution (Figure 3B, right plot), or either downweight the growth based estimators (as done with yelloweye rockfish) or the longevity based estimators (if there is concern with the maximum age estimate) to use a single mode.

Some general recommendations on estimating natural mortality emerge from using the NMT:

1. Enter all available inputs (including other available estimates of M entered as user input) into the NMT. Critical evaluation of inputs should occur both before inclusion in the tool and once M values are generated (as it may become clearer some inputs are questionable upon seeing the estimated M) to gain some sense of potential reliability in methods based on that input.
2. Consider adding uncertainty to the M estimates rather than just using point estimates. A lognormal distribution is typically assumed, and Hamel and Cope (this issue) recommend a standard deviation of 0.31 .
3. Initially consider the longevity (if available) estimators of M as most informative (Then et al. 2015), but compare them to the other estimators. If there is low overlap between longevity and other estimators (or between estimators in general), consider again the quality of the life history inputs and observe deviations in well-known life history correlations (e.g., fast growing and quick to mature, but long-lived) at the species or other taxonomic level. If the major differences are by groups of estimators, investigate what it takes to change input values to achieve the estimates of M from other estimators (e.g.,
changing longevity for yelloweye rockfish to match M estimates from the growth- and/or maturity-based M estimators), and determine whether these input changes are realistic (e.g., yelloweye rockfish longevity needed to change to unreasonably low values to obtain M estimates similar to growth-based methods)
4. 'If multiple modes are present and there are no obvious errors in the life history inputs or notable bias in estimators for the particular taxon, but uncertainty remains in the reliability of the longevity estimate,
a. Consider the multiple modes as different hypotheses of M and create separate distributions. Altering the weighting of methods (e.g., downweighting certain estimators to isolate others) is one way to do this. These alternative hypotheses of M do not need to be treated equally, and in some cases, some modes may be deemed unrealistic (e.g., M values that seem much too high; see M values from growth and maturity estimators in yelloweye rockfish) and can be ignored (Figure 3A, right panel). Prior distributions can be developed using the prior distribution portion of the tool, with appropriate consideration of intra-input weighting (e.g. if two estimators use longevity, weight each by 0.5 so they are not unintentionally upweighted).
b. 'If there are no evident natural groupings of the M estimates based on methods, but still multiple modes, one can either use a distribution inclusive of all methods (e.g., Figure 3B, right panel) or choose to break them out into multiple distributions as in (3a).
5. The resultant prior distributions can either be specified using summary statistics (e.g., median and variance) or as a vector with a user-specified number of random draws (with the default being 1 million draws).

Additionally, it may also be appropriate to consider the age-specific estimates that also are provided by the NMT, if the required inputs are available.

The ultimate formulation of a value or distribution of M is up to the user, but the in situ ability to compare across methods offers the potential for building an ongoing understanding of how these methods relate to one another under a variety of data conditions and life history configurations. These types of comparisons may eventually reveal inherent patterns and sensitivities in certain methods under different life history types. For instance, the revised versions of the Alverson and Carney (1975) method (Zhang and Megrey 2006) often result in extremely low estimates of natural mortality (Figure 1A, left panel, ZM_AC_dem and ZM_AC_pel; see Zhang and Megrey 2006 results that also show this tendency), but in some cases can show more reasonable values (Figure 1B, left value,, ZM_CA_dem and ZM_CA_pel). Understanding such individual vagaries on top of the already complicated evaluation of input value quality and life history types on M estimators benefits from extensive applications and comparisons. The Natural Mortality Tool, while making these methods accessible, provides the space to grow intuition on applying M estimators. The tool is also open to further estimator inclusion and additional diagnostics and functionality improvements, offering an adaptable interface and utility as options change and grow.

We are well beyond the default days of $M=0.2$. May we now instead turn 0.2 back into a question mark (Figure 4) and use the power of empirical analysis and accessible, transparent
tools to promote investigation and construction of M values that embrace uncertainty and are situation-specific.

Acknowledgements

We thank the many users of the Natural Mortality Tool over the years that have used various versions of this tool and provided extremely valuable feedback on improving functionality, presentation, and options. JMC is grateful for the opportunity to present this tool at the Center for the Advancement of Population Assessment Methodology Workshop on Natural Mortality 14-17 June, 2021. Thank you to all of the organizers who brought wonderful scientists together to explore the multitudes contained in natural mortality. Thank you also to Brian Langseth for reviewing an earlier version of this paper. We also thank NOAA Fisheries for providing in-kind support this work.

References

Alverson, D.L. and Carney, M.J. (1975) A graphic review of the growth and decay of population cohorts. Journal du Conseil International pour l'Exploration de la Mer 36, 133-143.

Anderson, E.D., 2015. Lessons from a career in fisheries science \ddagger. ICES Journal of Marine Science 72, 2169-2179. https://doi.org/10.1093/icesjms/fsv098

Anderson, S.C., Branch, T.A., Cooper, A.B., Dulvy, N.K., 2017. Black-swan events in animal populations. Proceedings of the National Academy of Sciences 201611525. https://doi.org/10.1073/pnas. 1611525114

Beverton, R.J.H., 1992. Patterns of reproductive strategy parameters in some marine teleost fishes. Journal of Fish Biology 41, 137-160.

Beverton, R.J.H., Holt, S.J., 1959. A Review of the Lifespans and Mortality Rates of Fish in Nature, and Their Relation to Growth and Other Physiological Characteristics, in: Ciba Foundation Symposium - The Lifespan of Animals (Colloquia on Ageing). John Wiley \& Sons, Ltd, pp. 142-180. https://doi.org/10.1002/9780470715253.ch10

Boukal, D.S., Dieckmann, U., Enberg, K., Heino, M., Jørgensen, C., 2014. Life-history implications of the allometric scaling of growth. Journal of Theoretical Biology 359, 199-207. https://doi.org/10.1016/j.jtbi.2014.05.022

Chang, W., Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan McPherson, Alan Dipert and Barbara Borges. 2021. shiny: Web Application Framework for R. R package version 1.7.1. https://CRAN.R-project.org/package=shiny

Chapman, D.G. 1961. Statistical Problems in Dynamics of Exploited Fisheries Populations. Jerzy Neyman (Ed.). Berkeley Symposium on Mathematical Statistics and Probability. pp 153-168.

Chapman, D.G., Robson, D.S., 1960. The Analysis of a Catch Curve. Biometrics 16, 354368. https://doi.org/10.2307/2527687

Charnov, E.L., Berrigan, D., Shine, R., 1993. The M/k Ratio is the Same for Fish and Reptiles. The American Naturalist 142, 707-711.

Charnov, E.L., Gislason, H., Pope, J.G., 2013. Evolutionary assembly rules for fish life histories. Fish and Fisheries 14, 213-224. https://doi.org/10.1111/j.14672979.2012.00467.x

Chen, S., Watanabe, S., 1989. Age Dependence of Natural Mortality Coefficient in Fish Population Dynamics. Nippon Suisan Gakkaishi 55, 205-208. https://doi.org/10.2331/suisan.55.205

Cigler, P., Kvapil, P., Kastelic, M., Gombač, M., Švara, T., Vobr, J., Račnik, J., Bartova, E., 2020. Retrospective study of causes of animal mortality in Ljubljana Zoo 2005-2015. zamd 51, 571-577. https://doi.org/10.1638/2019-0206

Consequences of error in natural mortality and its estimation in stock assessment models | Elsevier Enhanced Reader [WWW Document] n.d. $\underline{\text { https://doi.org/10.1016/j.fishres.2020.105759 }}$

Cordue, P.L., 2012. Fishing intensity metrics for use in overfishing determination. ICES J. Mar. Sci. 69, 615-623. https://doi.org/10.1093/icesjms/fss036

Du, C., Jia, D., Jin, L., Shi, L., 2018. The impact of neutral reward on cooperation in public good game. Eur. Phys. J. B 91, 234. https://doi.org/10.1140/epjb/e2018-90052-6

Ebert, T.A. 1999. Plant and Animal Populations: Methods in Demography. Academic Press, San Diego. 312p.

Enberg, K., Jørgensen, C., Dunlop, E.S., Varpe, Ø., Boukal, D.S., Baulier, L., Eliassen, S., Heino, M., 2012. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Marine Ecology 33, 1-25. https://doi.org/10.1111/j.14390485.2011.00460.x

Essington, T.E., Kitchell, J.F., Walters, C.J., 2001. The von Bertalanffy growth function, bioenergetics, and the consumption rates of fish. Canadian Journal of Fisheries and Aquatic Sciences 58, 2129-2138.

Fey, S.B., Siepielski, A.M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J.L., Huber, E.R., Fey, M.J., Catenazzi, A., Carlson, S.M., 2015. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. PNAS 112, 1083-1088. https://doi.org/10.1073/pnas. 1414894112

Froese, R. and D. Pauly. Editors. 2021.FishBase. World Wide Web electronic publication. www.fishbase.org, (08/2021)

Gertseva, V. and Cope., J.M., 2017. Stock assessment of the yelloweye rockfish (Sebastes ruberrimus) in state and federal waters off California, Oregon and Washington. Pacific Fishery Management Council. 293 pages. https://www.pcouncil.org/documents/2017/12/stock-assessment-of-the-yelloweye-rockfish-sebastes-ruberrimus-in-state-and-federal-waters-off-california-oregon-andwashington.pdf/.

Gunderson, D.R., 1997. Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 990-998.

Hamel, O.S., 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science 72, 62-69. https://doi.org/10.1093/icesjms/fsu131

Hamel, O.S., J.M. Cope. This issue. Development and considerations for application of a longevity-based prior for the natural mortality rate. Fisheries Research.

Monk, M.H, and He, X., 2019. The combined status of gopher (Sebastes carnatus) and black-and-yellow rockfishes (Sebastes chysomelas) in U.S. waters off California in 2019. Pacific Fishery Management Council. 229 pages. https://www.pcouncil.org/documents/2019/10/gopher-black-and-yellow-assessment2019.pdf/.

Hoag, H., 2003. Atlantic cod meet icy death. Nature 422, 792-792. https://doi.org/10.1038/422792b

Hill, J.E., DeVault, T.L., Belant, J.L., 2019. Cause-specific mortality of the world's terrestrial vertebrates. Global Ecology and Biogeography 28, 680-689. https://doi.org/10.1111/geb. 12881

Hoenig, J. M., 2017. Should natural mortality estimators based on maximum age also consider sample size? Transactions of the American Fisheries Society 146(1), 136-146.

Hoenig, J. M, Barrowman, N. J., Hearn, W. S., and Pollock, K. H., 1998. Multiyear tagging studies incorporating fishing effort data. Canadian Journal of Fisheries and Aquatic Sciences 55: 1466-1476

Jennings, S., Dulvy, N.K., 2008. Beverton and Holt's Insights into Life History Theory: Influence, Application and Future Use, in: Advances in Fisheries Science. John Wiley \& Sons, Ltd, pp. 434-450. https://doi.org/10.1002/9781444302653.ch18

Jensen, A.L., 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53, 820822.

Jiang, H. 2005. Age-dependent tag return models for estimating fishing mortality, natural mortality and selectivity. Doctoral dissertation. North Carolina State University, Raleigh.

Jiang, H., Pollock, K. H., Brownie, C., Hoenig, J. M., Latour, R. J., Wells, B. K., and Hightower, J. E., 2007. Tag return models allowing for harvest and catch and release: evidence of environmental and management impacts on striped bass fishing and natural mortality rates. North American Journal of Fisheries Management 27:387-396.

Kenchington, T.J., 2013. Natural mortality estimators for information-limited fisheries. Fish and Fisheries n/a-n/a. https://doi.org/10.1111/faf. 12027

Lee, H.-H., Maunder, M.N., Piner, K.R., Methot, R.D., 2011. Estimating natural mortality within a fisheries stock assessment model: An evaluation using simulation analysis based on twelve stock assessments. Fisheries Research 109, 89-94. https://doi.org/10.1016/j.fishres.2011.01.021

Lendrem, B.A.D., Lendrem, D.W., Gray, A., Isaacs, J.D., 2014. The Darwin Awards: sex differences in idiotic behaviour. BMJ 349, g7094. https://doi.org/10.1136/bmj.g7094

Lenting, B., Gartrell, B., Kokosinska, A., Duignan, P.J., Michael, S., Hunter, S., Roe, W.D., 2019. Causes of adult mortality in two populations of New Zealand sea lions
(Phocarctos hookeri). Veterinary and Animal Science 7, 100057. https://doi.org/10.1016/j.vas.2019.100057

Maunder, M.N., Hamel, O.S., Lee, H.-H., Piner, K.R., Cope, J.M., Punt, A.E., Ianelli, J.N., Methot, R.D. This issue. A review of estimation methods for natural mortality and their performance in the context of fishery stock assessment. Fisheries Research.

Nelson, G.A. 2021. fishmethods: Fishery Science Methods and Models. R package version 1.11-2. https://CRAN.R-project.org/package=fishmethods

Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science 39, 175-192.

Pope, J.G., Gislason, H., Rice, J.C., Daan, N., 2021. Scrabbling around for understanding of natural mortality. Fisheries Research 240, 105952. https://doi.org/10.1016/j.fishres.2021.105952

Prince, J., Hordyk, A., Valencia, S.R., Loneragan, N., Sainsbury, K., 2015. Revisiting the concept of Beverton -Holt life-history invariants with the aim of informing data-poor fisheries assessment. ICES Journal of Marine Science 72, 194-203. https://doi.org/10.1093/icesjms/fsu011

Punt, A.E., Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Reviews in Fish Biology and Fisheries 7, 35-63.

R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reznick, D., Ghalambor, C., Nunney, L., 2002. The evolution of senescence in fish. Mech Ageing Dev 123, 773-789. https://doi.org/10.1016/s0047-6374(01)00423-7

Schnute, J.T., Haigh, R., 2007. Compositional analysis of catch curve data, with an application to Sebastes maliger. ICES Journal of Marine Science: Journal du Conseil 64, 218-233.

Seber, G.A.F., 1982. The estimation of animal abundance and related parameters. Griffin, London. 654p.

Sparre, P. and S.C. Venema. 1998. Introduction to tropical fish stock assessment. Part 1: Manual. FAO Fisheries Technical Paper No. 306.1, Rev. 2. Rome FAO 407p.

Stenkat, J., Krautwald-Junghanns, M.-E., Schmidt, V., 2013. Causes of Morbidity and Mortality in Free-Living Birds in an Urban Environment in Germany. EcoHealth 10, 352-365. https://doi.org/10.1007/s10393-013-0868-9

Then, A.Y., Hoenig, J.M., Hall, N.G., Hewitt, D.A., 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science 72, 82-92. https://doi.org/10.1093/icesjms/fsu136

Thorson,J. 2019. FishLife: Predict Life History Parameters For Any Fish. R package version 2.0.0. http://github.com/James-Thorson/FishLife

Thorson, J.T., Munch, S.B., Cope, J.M., Gao, J., 2017. Predicting life history parameters for all fishes worldwide. Ecological Applications 27, 2262-2276. https://doi.org/10.1002/eap. 1606

Thorson, J.T., Prager, M.H., 2011. Better Catch Curves: Incorporating Age-Specific Natural Mortality and Logistic Selectivity. Transactions of the American Fisheries Society 140, 356-366. https://doi.org/10.1080/00028487.2011.557016

Vetter, E.F., 1988. ESTIMATION OF NATURAL MORTALITY IN FISH STOCKS. undefined.
von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries on growth laws II). Human Biology 10, 181-213.

Zhang, C.-I. and Megrey, B.A. (2006) A revised Alverson and Carney model for estimating the instantaneous rate of natural mortality. Transactions of the American Fisheries Society 135, 620-633.

Tables

Table 1. List of empirical M estimators and the inputs needed to apply the method. A link to references for each method is found in the NMT app.

Method	Inputs
FishLife	Scientific name
Then_nls	longevity
Then_lm	longevity
Hamel_Amax	longevity
ZM_CA_pel	longevity, k, t_{0}
ZM_CA_dem	longevity, k, t_{0}
Chen-Wat	Age, k, t_{0}
Then_VBGF	Lo, k
Hamel_k	k
Jensen_k 1	k
Jensen_k 2	k
Gislason	$L \infty, k$, length
Charnov	L_{∞}, k, length
Pauly_lt	L_{∞}, k, Temp
Roff	k, age at maturity

Jensen_Amat	age at maturity
Ri_Ef_Amat	age at maturity
Pauly_wt	W_{∞}, k_{w}, Temp
McC\&Gil	dry weight, Temp
PnW	dry weight
Lorenzen	wet weight
GSI	GSI

	Yelloweye	Gopher
Longevity (years)	123	28
$\mathrm{~L}_{\infty}(\mathrm{cm})$	64.1	30.6
K	0.65	0.1
t_{0} (years)	-1.22	-2.89
$\mathrm{~A}_{\text {maturity }}$ (years)	15.5	9
Temperature (C)$\left.{ }^{\circ}\right)$	7	10
Wet wt. (g)	5000	500

Yelloweye Gopher

Longevity (years) $123 \quad 28$
$\begin{array}{lll}\mathrm{L}_{\infty}(\mathrm{cm}) & 64.1 & 30.6\end{array}$
$\begin{array}{lll}\mathrm{K} & 0.65 & 0.1\end{array}$
t_{0} (years) $\quad-1.22 \quad-2.89$
$\mathrm{A}_{\text {maturity }}$ (years) $\quad 15.5 \quad 9$

Temperature $\left(\mathrm{C}^{\circ}\right) \quad 7 \quad 10$

Wet wt. (g) $5000 \quad 500$

Table 2. Life history inputs for the two rockfish species used as example applications of the NMT. Values are taken from the U.S. west coast stock assessment for each species (Gertseva and Figures
A) Yelloweye rockfish

B) Gopher rockfish

Figure 1. Point (with 95\% lognormal error bars; left column panels) and age-specific (right top and right bottom panels) estimates of M by method for yelloweye (top row) and gopher (bottom row) rockfishes. Colors in the point estimate panels refer to the life history parameters used in each estimator.
A) Yelloweye rockfish

Figure 2. Weighted empirical M estimators with no additional variance using the default weightings (left column panels) and the final distribution with central tendency measures (right column panels) of M for yelloweye (top row) and gopher (bottom row) rockfishes. In the yelloweye rockfish example, the final distribution is composed of estimators applying longevity only; all other estimators are downweighted to 0 .
A) Yelloweye rockfish

Figure 3. Weighted empirical M estimators with additional variance ($\mathrm{CV}=0.2$) using the default weightings (left column panels) and the final distribution with central tendency measures (right column panels) of M for yelloweye (top row) and gopher (bottom row) rockfishes. In the yelloweye rockfish example, the final distribution is composed of estimators applying longevity only; all other estimators are downweighted to 0 .

Figure 4. The reversion of M that invites inquiry. Using a tool like the NMT can turn the question mark into a species-specific estimate of M.

[^0]: ${ }^{1}$ https://connect.fisheries.noaa.gov/natural-mortality-tool/
 2 https://github.com/shcaba/Natural-Mortality-Tool

