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ABSTRACT 11 

Natural morality (M) is a notoriously difficult population parameter to estimate, yet it is also one 12 

of the most important measures of life history that sets, as Beverton and Holt called it, "the 13 

course of events". Stock assessments that include this parameter often show great sensitivity to 14 

its value, reflecting the need to not only define its value, but also the uncertainty inherent in its 15 

estimation. Direct measurement of natural mortality is often limited to resource intensive tag-16 

recapture studies. Indirect measures are more often used, and are built on life history theory, 17 

relating natural mortality to traits such as age, size, maturity and reproductive condition (or just 18 

assuming 0.2). The Natural Mortality Tool attempts to accumulate several empirical estimators 19 

of M into one application. Users simply input life history values to obtain estimates of natural 20 

mortality. These estimates can be taken individually or can be combined into a weighted density 21 

function that can be used to develop an M prior that integrates uncertainty across several 22 

estimates. Comparing estimators can also reveal inconsistencies in life history values that may 23 

lead to further refining of basic biological understanding. Two examples are used to demonstrate 24 

tool functionality and highlight general recommendations on implementation. Making these 25 

estimators and the development of uncertainty in estimating natural mortality more widely 26 

available hopefully supports transparent and defensible decision-making on the treatment of this 27 

important population parameter. 28 
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1. Introduction 31 

Life and death are binary moments for organisms. While the individual is considered either dead 32 

or alive (if questionably useful; Du et al. 2018), mortality is a population process over a given 33 

time period (e.g., 10% of the population has died over a year). The causes of mortality are 34 

numerous and intertwined, and include starvation/malnutrition (Fey et al. 2015; Hill et al. 2020), 35 

disease (Cigler et al. 2020; Stenkat et al. 2013), predation (Hill et al. 2020), competition or 36 

defense (Lenting et al. 2019; Stenkat et al. 2013), environmental conditions (Fey et al. 2015), 37 

senescence (Reznick et al. 2002), poor decision-making (Lendrem et al. 2014) and/or bad luck 38 

(e.g., black swan events; Hoag 2003; Anderson et al. 2017).   39 

Mortality is a key component of basic population modelling, as births minus deaths 40 

defines population growth (in a closed population) for a given time period (Ebert 1999). While 41 

mortality can be expressed as a finite or discrete rate (i.e., a percentage), it is often expressed as 42 

an exponential instantaneous (i.e., continuous) rate of change. Using instantaneous rates provides 43 

mathematical convenience and flexibility to express at what point mortality occurs (Ebert 1999).  44 

When modelling marine fish populations, it is common to distinguish mortality due to 45 

human extraction (i.e. fishing) from other sources. This quantification is possible when fishing 46 

removals (landings plus dead discards) are monitored, and results in the following common 47 

treatment: total mortality (Z) = natural mortality (M) + fishing mortality (F), where natural 48 

mortality is the remaining predation combined with any other sources of mortality (Sparre and 49 

Venema 1989). This separation of mortality components is particularly useful for fisheries 50 

management, as the F contribution can be compared to a reference level of fishing (Fref) that 51 

indicates whether overfishing is occurring (e.g., F>Fref indicates overfishing: Cordue 2012). 52 
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While there are advanced treatments to remove other predation sources from M (often called M2 53 

(Pope et al. 2021)), M in this paper includes all sources of mortality excluding fishing mortality.   54 

 In many of the analytical approaches used to estimate stock status and other important 55 

fisheries management metrics under conditions of varying data and resource availability (Cope et 56 

al. in prep), M is an essential input parameter. In those models, M is widely recognized as both a 57 

highly influential parameter in stock assessment modelling and in defining stock productivity 58 

and subsequent fishery reference points, but is difficult to directly measure in marine organisms 59 

(Maunder et al., this issue; Punt et al. 2021). This is particularly true for populations with 60 

individuals that move around, do not stay in the sampling area and/or are in habitats that make 61 

routine monitoring a challenge. Direct estimation in age-structured models is possible, but 62 

requires adequate biological composition data and an understanding of the functional form of 63 

fishery selectivity (Lee et al. 2011). Mark-recapture studies (Chapman 1961; Seber 1982) or age-64 

based sampling of cohorts through time (Chapman and Robson 1960; Schnute and Haigh 2007; 65 

Thorson and Prager 2011) are other direct ways to measure mortality. In some instances, M can 66 

be directly estimated separate from Z (Hoenig et al. 1998; Jiang 2005; Jiang et al. 2007), though 67 

it is common that Z rather than M is estimated, thus  F would be required to derive M from Z 68 

(i.e., M= Z-F).  69 

 In one of the most famous and cheeky derivations of M, John Pope in 1975 showed the 70 

evolution of a question mark into an often assumed value of M = 0.2 (Figure 1 of Anderson 2015 71 

and Pope et al. 2021). Sadly, 0.2 was indeed a commonly used default value when no other M 72 

value was available. Since then, a host of empirical approaches have been developed to allow the 73 

indirect estimation of M. These approaches have been well described and evaluated elsewhere 74 

(Kenchington 2014; Maunder et al. this issue; Then et al. 2015; Vetter 2008), and while there are 75 
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some approaches that are favored over others, having ready access to the many empirical 76 

estimators of M allows for more examination and comparison of these estimators under a variety 77 

of situations. This paper describes a free software application with a graphical user interface 78 

(GUI), the Natural Mortality Tool, designed to be a practical, user-friendly way to explore a wide 79 

variety of empirical M estimators. Available methods, tool features, and suggested rules for use 80 

are provided herein to demonstrate the range of tool functionality and how it can support both 81 

point estimation and uncertainty analysis in this critical model parameter.  82 

2. The Natural Mortality Tool (NMT) 83 

The NMT
1
 is written in the Shiny (Chang et al. 2021) package for R (R Core Team 2021), which 84 

allows for the creation of interactive graphical user interface (GUI) web-based applications. The 85 

GUI is a key feature of this tool, as it allows for user interaction and real-time response based on 86 

user input. It also allows for saving output objects and images. It does not require the user to 87 

know how to formally use R. The code can also be downloaded from the GitHub repository
2
 for 88 

running the tool offline, where user installation instructions are found. The NMT currently has 89 

23 different estimators of M based on 14 possible inputs (all of which can be expanded as new 90 

methods develop), with an additional input available for unlimited user supplied M values (e.g., 91 

0.2). This provides a plaform to compare M values generated from each estimator and/or user 92 

supplied value. Not all inputs need to be entered, only those that are available to the user, and 93 

thus outputs will only be provided for those methods fully specified by those inputs. The NMT 94 

has links that open windows to show associated references and a table (Table 1) of the inputs 95 

needed for each method. Of the 23 estimators (22 provide a constant M across ages and 3 96 

                                                
1
 https://connect.fisheries.noaa.gov/natural-mortality-tool/ 

2
 https://github.com/shcaba/Natural-Mortality-Tool 

https://connect.fisheries.noaa.gov/natural-mortality-tool/
https://github.com/shcaba/Natural-Mortality-Tool
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(including two that also provide a constant M value) provide age-specific M estimates), one is 97 

based on the R library FishLife (Thorson et al. 2017; Thorson 2019), six are based on the 98 

fishmethods R library (using the function M.empirical(); Nelson 2021), and the remaining are 99 

coded within the NMT. The latest version of each of these estimators are used, with updates and 100 

additions to the M estimators an ongoing point of tool maintenance. The authors welcome further 101 

recommendations of additional M estimators to include, as well as comments on the usefulness 102 

of those estimators currently available, via issues reporting on the GitHub repository. 103 

2.2 Empirical Estimators in the NMT 104 

Empirical estimation of M is generally based on relationships between other, easier to measure 105 

life history parameters. Beverton and Holt (1959) were early investigators on building 106 

relationships between M and growth parameters, maximum age, and reproductive biology 107 

(Beverton 1992; Prince et al. 2015). Subsequent work has built on those relationships and 108 

developed multi-parameter relationships to estimate M (Charnov et al. 2013; Chen and Watanabe 109 

1989). By entering just the scientific name of the species, one can access the estimate of M from 110 

the FishLife library that applies a taxonomically-structured multivariate model to information 111 

found in the FishBase database (Thorson et al. 2017; Froese and Pauly 2021). 112 

Maximum age is one of the most commonly used values to build relationships to M, as it 113 

makes intuitive sense that higher life expectancies must mean a lower population mortality rate 114 

(Hamel and Cope, this issue; Maunder et al., this issue; Then et al. 2015). While using maximum 115 

age tends to be preferred, establishing the maximum age (not necessarily the maximum age ever 116 

recorded) of a population is not always straightforward or available (Hamel and Cope, this issue; 117 

Maunder et al., this issue). Maximum age can be affected by ageing error and/or sampling age-118 

truncated populations (Hamel and Cope, this issue; Hoenig 2017). Thus, while possibly easier to 119 
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measure than M, maximum age-- and the meta-analytical estimators based on them-- still suffers 120 

from uncertainty that needs careful consideration. There are currently six methods in the NMT 121 

that can use longevity in the estimation of M (the Chen and Watanabe (1989) method can take 122 

any age, as it provides age-specific M estimates, but longevity is recommended when using one 123 

age value), with three combining maximum age with other parameters in the estimator (Table 1). 124 

 Parameters of the Beverton-Holt (1959) version of the von Bertalanffy growth function 125 

(L∞, k and t0) are also commonly used in empirical M estimators. The process of accounting for 126 

metabolism and its allocation to maintenance, growth, reproduction, and mortality links these 127 

processes and are foundational to life history theory (Boukal et al. 2014; Enberg et al. 2012; 128 

Essington 2001). The individual growth coefficient k is most directly related to M (even forming 129 

what is considered a dimensionless ratio within or across taxa, M/k; Beverton and Holt 1959; 130 

Charnov et al. 1993; Jenning and Dulvy 2008; Prince et al. 2015), though several methods (Table 131 

1) also require either the theoretical age at size 0 (t0) or the average maximum size (L∞). While 132 

less directly related to M than maximum age, the von Bertalanffy growth parameters tend to be 133 

easier to estimate than maximum age (though issues of ageing error, fishery selectivity and 134 

sampling, along with the correlation among the three parameters, can also make this difficult, 135 

especially for k and t0), thus providing, in some cases, a more accessible method when maximum 136 

age is poorly understood. There are currently 11 methods in the NMT that use von Bertalanffy 137 

growth parameters, three of which use only k, three of which use both k and L∞ on their own or 138 

with length information, and five that use other parameters, including three of which combine 139 

with age (Table 1). One of the growth-based methods also includes water temperature as it may 140 

affect metabolism and behavior thus indirectly influencing M (Pauly 1980). 141 
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 The original von Bertalanffy growth function was derived using weight (W) (von 142 

Bertalanffy 1938; Essington 2001), but is converted to length using the common power weight-143 

length relationship of W=aL
b
. Thus, weight (either wet or dry) can also be related to M carrying 144 

over the logic used in those relationships derived from length (Pauly 1980). The NMT contains 145 

four weight-based M estimators, two of which use weight only, two of which include 146 

temperature, and one that uses the weight-based von Bertalanffy equation (W∞, kw; Table 1). 147 

 Reproduction is also part of the energy allocation equation, and the onset of reproductive 148 

years usually dictates when growth begins to slow (Enberg et al. 2012). This interplay between 149 

growth and reproduction also makes the length or age at maturity another candidate as an 150 

estimator of M (Jensen 1996). There are three estimators that use age at maturity as an input, 151 

with only one of them adding an additional parameter (k) in the equation (Table 1). 152 

The remaining method uses the allometric concept of growth and reproduction as related 153 

to mortality and interprets the M relationship through the ratio of reproduction (measured by the 154 

gonad weight) and fish weight to express reproductive effort (Gunderson 1997; Hamel 2015). 155 

The gonadosomatic index (GSI) is a metric not often sampled, thus represents a unique, often 156 

unavailable, but relatively easy to measure value as an option to estimate M.   157 

 The tool responds to user inputs as they are included, producing both a figure of outputs 158 

across the different methods and a simple table to see the actual quantities illustrated in the plot. 159 

Both the table (as a .csv file) and the figure are downloadable with a click of the button, as is an 160 

R object that contains all user inputs and the resulting M values. This object is especially notable 161 

as it reserves a record of the exact inputs used to produce the M values, in addition to an object 162 

that can be imported into R.    163 
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2.3. Accounting for uncertainty in the NMT 164 

Sources of uncertainty in M can be expressed in at least two main ways: among estimators and 165 

within estimators. The default is to assume each estimator produces a point estimate, though 166 

there is an option to include either lognormally or normally distributed error with a user-167 

specified amount of error. Lognormally distributed error is more appropriate for most estimators, 168 

as M itself is a rate parameter that occurs in the exponent when relating to population size. 169 

Estimated uncertainty is only empirically available for some methods and requires the initial 170 

dataset for calculation (Hamel 2015). Instead, an option for user input uncertainty is included and 171 

assumed the same for each estimate for tool simplicity. Future modifications to the tool could 172 

consider method-specific uncertainty, but may also overly complicate the tool. One could also go 173 

back and attempt to calculate uncertainty from the original data set used to create a given 174 

empirical relationship and input that value into the NMT. Further uncertainty can also be 175 

explored through changing input values (e.g., what if longevity is 60 instead of 50?).  176 

 Once the estimators are activated via parameter inputs and additional variance included, 177 

the user can navigate to the second tab (“Composite M: User weighted”) to create a custom 178 

distribution of M that combines all M estimators and associated uncertainty into a composite 179 

distribution (Figures 2 and 3). A user-specified method-weighted (i.e., percent contribution) 180 

approach is used to construct the composite distribution of M. This composite can then be used 181 

in a Monte Carlo approach for resampling or used to specify a prior on M.  Allowing for user-182 

based weighting of each method addresses multiple issues:  183 

1. Input influence: Multiple methods may use the same input (e.g., longevity), thus causing 184 

unequal input influence when comparing M estimates across methods if all methods are 185 

equally weighted. For instance, if there are three methods that use only longevity and one 186 
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that uses GSI, weighting each method equally upweights the influence of the longevity 187 

input purely based on the number of estimators used. One solution is to downweight each 188 

longevity-based estimator by two-thirds so the overall weighting of each adds up to one. 189 

The user gets to determine the combination of weightings based on their preferences. The 190 

default weightings in the NMT are a mix of applying the above rational to avoid outsized 191 

input influence and starting some estimators at a weight of 0 as they often produce 192 

outliers (see next issue).  193 

2. Method removal: Included in the user decision of how to weight each method is whether 194 

to include each method at all. There are many reasons why some methods may produce 195 

highly questionable values (e.g., extreme outliers) when applied in certain situations. The 196 

user may decide to ignore that method by setting the weighting to 0. Recommendations 197 

of using some estimators over others (e.g., longevity-based estimators are preferred over 198 

growth-based estimators; Then et al. 2015) may also be a reason to omit certain 199 

estimators. 200 

3. Custom priors: The custom combination of weightings across all M estimators and any 201 

additional uncertainty the user may have included creates the composite M distribution. 202 

The construction of the composite is first done by setting X number of total composite 203 

samples (user defined, but the default is one million). The individual method weightings 204 

are then turned into standardized weights (individual method weight/sum of all method 205 

weightings) to give the Yi number of samples from the total number of X samples for each 206 

estimator, where i is the estimator (e.g., 200000 out of 1000000 samples for estimator 1) 207 

and X = 𝛴Yi. If there is no additional uncertainty added to the methods, then the point 208 

estimate is replicated Yi times for each method i. If there is a specified error distribution 209 
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(either lognormal or normal), then a Yi random sample is taken for each distribution. A 210 

final option to tune the bandwidth, with values greater than 1 causing more diffuse 211 

distributions, is offered for further M distribution customization. 212 

 213 

Once the user specifies the composite weightings, number of samples, and choice of density 214 

bandwidth (which smooths out the density distribution and allows the user to make more diffuse 215 

priors if they so choose), a plot of both the component points (left column plots in Figure 2) or 216 

distributions (left column plots in Figure 3) and the overall density distribution (right column 217 

plots in Figures 2 and 3) are provided for download and examination. R objects that contain the 218 

details of the sampling of each method and the final composite M values by methods are also 219 

provided for download.  220 

 A second approach to characterizing uncertainty (third tab: “Composite M: Inverse 221 

variance”) that develops a lognormal Bayesian prior distribution from multiple methods is also 222 

available (Hamel, 2015). This approach essentially multiplies the individual distributions 223 

together, and thus weights the alternative methods based upon the inverse of the variance (or 1 224 

divided by the square of the input standard deviation). Additional user-specified weights, as 225 

presented previously, can also be included. Where individual distributions are bimodal, this 226 

approach will provide a single central mode, in contrast to the treatment of biomodal results for 227 

the first approach. Thus the two approaches to characterizing uncertainty represent distinct views 228 

of the information each distribution provides relative to the other distributions included. The tool 229 

offers users their choice of either or both. 230 

 Overall, the point estimates (from the first tab) and/or the composite distributions and 231 

priors (from the second and third tabs) offer different ways of processing the estimates from each 232 
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method. Each can then be used to parameterize the variety of stock assessment methods that 233 

require natural mortality as an input, specify operating models used in simulation testing, or any 234 

other application that needs a value or distribution of M values.  235 

3. Benefits of and best practices when using the NMT 236 

The intent of the NMT goes beyond just easy access to the numerous M estimators. When 237 

considering the vagaries of inputs available for any given method, and the life history theory that 238 

underpins these methods, it is advantageous to be able to look across multiple M estimators and 239 

consider how they can be applied collectively to reflect uncertainty in M for a given population. 240 

To demonstrate and highlight some of the recommended uses of the tool, applications are 241 

presented using two rockfish (genus Sebastes) species, yelloweye (Sebastes ruberrimus) and 242 

gopher (S. carnatus) rockfishes (Table 2). 243 

 Comparing life history inputs across methods often results in a variety of possible M 244 

values, including the potential for large discrepancies in estimates (Figure 1).  But which should 245 

be used? Considering the yelloweye rockfish example (Figure 1A), the method-specific estimates 246 

group roughly by those using longevity and those using either growth or maturity, with the latter 247 

group estimating higher M values. These groups result in a bimodal composite distribution of M 248 

under default method weightings (Figure 3A).  249 

Given the previously stated difficulties in defining a representative longevity estimate, 250 

uncertainties in growth parameters, and potential variability in parameter relationships across 251 

taxa, seeing such discrepancies offers an avenue to explore these differences. One could ask the 252 

question “how much do I need to change the longevity input to achieve M values near the 253 

estimators using growth and maturity?” In this example, longevity needs to be lowered to a value 254 

of ~50 years to match the growth and maturity estimates of M. This is well outside the 255 
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uncertainty envelope of longevity for yelloweye rockfish. One could do a similar exploration 256 

with the von Bertalanffy values, which would take a 50% reduction in the k value to achieve M 257 

values as low as the longevity estimators. The differences in the estimators may be due to 258 

departures in the generalized life history relationships for a given taxa or species. For example, 259 

some Sebastes species tend to grow to near maximum size (L∞) quickly relative to their 260 

lifespans, and therefore, as noted in Beverton (1992), the standard cross-taxa relationship 261 

between k and M may be expected to be biased high for species, like some Sebastes, that grow 262 

quickly to asymptotic size. In contrast to the yelloweye rockfish results, there is less difference 263 

among the estimates of M for gopher rockfish among estimator groups, but still notable 264 

variability among individual methods that results in a bimodal distribution (Figure 3B).  265 

 The treatment of the resultant bimodal distributions should depend on the source of the 266 

bimodality. For the yelloweye example, there are two modes comprised of different estimators: 267 

one from longevity estimators and the other from growth and maturity (left plot of Figure 3A). 268 

Given neither could be resolved through initial confirmation of poor estimations of any of the 269 

inputs, one perspective is the two modes represent distinct distributions of M  that represent 270 

alternative hypotheses. The expression of alternative hypotheses in life history parameters is a 271 

standard approach to characterize uncertainty in population modelling and defining “states of 272 

nature” for decision analysis (Punt and Hilborn 1997). In this approach, there is no requirement 273 

to assume equal probability of these alternative hypotheses, and requires separating out methods 274 

into each hypothesis to construct each distribution. For the case of yelloweye rockfish, the higher 275 

M mode consists of growth and maturity-based estimators, but as previously stated, clearly 276 

incompatible with realistic longevity expectations. Figure 3A (right plot) shows a treatment that 277 

uses the methods weighting approach (second tab in the NMT) to downweight to zero all 278 
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estimators except the longevity-based estimators, isolating the lower M mode. For the gopher 279 

rockfish example, there is no grouping distinction or obvious reasoning to exclude certain 280 

estimators, so one may choose to use the overall bimodal composite distribution (Figure 3B, 281 

right plot), or either downweight the growth based estimators (as done with yelloweye rockfish) 282 

or the longevity based estimators (if there is concern with the maximum age estimate) to use a 283 

single mode. 284 

Some general recommendations on estimating natural mortality emerge from using the 285 

NMT:  286 

1. Enter all available inputs (including other available estimates of M entered as user input) 287 

into the NMT. Critical evaluation of inputs should occur both before inclusion in the tool 288 

and once M values are generated (as it may become clearer some inputs are questionable 289 

upon seeing the estimated M) to gain some sense of potential reliability in methods based 290 

on that input. 291 

2. Consider adding uncertainty to the M estimates rather than just using point estimates. A 292 

lognormal distribution is typically assumed, and Hamel and Cope (this issue) recommend 293 

a standard deviation of 0.31.    294 

3. Initially consider the longevity (if available) estimators of M as most informative (Then 295 

et al. 2015), but compare them to the other estimators. If there is low overlap between 296 

longevity and other estimators (or between estimators in general), consider again the 297 

quality of the life history inputs and observe deviations in well-known life history 298 

correlations (e.g., fast growing and quick to mature, but long-lived) at the species or other 299 

taxonomic level. If the major differences are by groups of estimators, investigate what it 300 

takes to change input values to achieve the estimates of M from other estimators (e.g., 301 
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changing longevity for yelloweye rockfish to match M estimates from the growth- and/or 302 

maturity-based M estimators), and determine whether these input changes are realistic 303 

(e.g., yelloweye rockfish longevity needed to change to unreasonably low values to 304 

obtain M estimates similar to growth-based methods) 305 

4. 'If multiple modes are present and there are no obvious errors in the life history inputs or 306 

notable bias in estimators for the particular taxon, but uncertainty remains in the 307 

reliability of the longevity estimate,  308 

a. Consider the multiple modes as different hypotheses of M and create separate 309 

distributions. Altering the weighting of methods (e.g., downweighting certain 310 

estimators to isolate others) is one way to do this. These alternative hypotheses of 311 

M do not need to be treated equally, and in some cases, some modes may be 312 

deemed unrealistic (e.g., M values that seem much too high; see M values from 313 

growth and maturity estimators in yelloweye rockfish) and can be ignored (Figure 314 

3A, right panel). Prior distributions can be developed using the prior distribution 315 

portion of the tool, with appropriate consideration of intra-input weighting (e.g. if 316 

two estimators use longevity, weight each by 0.5 so they are not unintentionally 317 

upweighted). 318 

b. 'If there are no evident natural groupings of the M estimates based on methods, 319 

but still multiple modes, one can either use a distribution inclusive of all methods 320 

(e.g., Figure 3B, right panel) or choose to break them out into multiple 321 

distributions as in (3a). 322 
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5. The resultant prior distributions can either be specified using summary statistics (e.g., 323 

median and variance) or as a vector with a user-specified number of random draws (with 324 

the default being 1 million draws).  325 

Additionally, it may also be appropriate to consider the age-specific estimates that also are 326 

provided by the NMT, if the required inputs are available. 327 

The ultimate formulation of a value or distribution of M is up to the user, but the in situ 328 

ability to compare across methods offers the potential for building an ongoing understanding of 329 

how these methods relate to one another under a variety of data conditions and life history 330 

configurations. These types of comparisons may eventually reveal inherent patterns and 331 

sensitivities in certain methods under different life history types. For instance, the revised 332 

versions of the Alverson and Carney (1975) method (Zhang and Megrey 2006) often result in 333 

extremely low estimates of natural mortality (Figure 1A, left panel, ZM_AC_dem and 334 

ZM_AC_pel; see Zhang and Megrey 2006 results that also show this tendency), but in some 335 

cases can show more reasonable values (Figure 1B, left value,, ZM_CA_dem and ZM_CA_pel). 336 

Understanding such individual vagaries on top of the already complicated evaluation of input 337 

value quality and life history types on M estimators benefits from extensive applications and 338 

comparisons. The Natural Mortality Tool, while making these methods accessible, provides the 339 

space to grow intuition on applying M estimators. The tool is also open to further estimator 340 

inclusion and additional diagnostics and functionality improvements, offering an adaptable 341 

interface and utility as options change and grow.  342 

We are well beyond the default days of M = 0.2. May we now instead turn 0.2 back into a 343 

question mark (Figure 4) and use the power of empirical analysis and accessible, transparent 344 
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tools to promote investigation and construction of M values that embrace uncertainty and are 345 

situation-specific. 346 

 347 
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Tables 522 

 523 

Table 1. List of empirical M estimators and the inputs needed to apply the method. A link 524 

to references for each method is found in the NMT app. 525 

Method Inputs 

FishLife Scientific name 

Then_nls longevity 

Then_lm longevity 

Hamel_Amax longevity 

ZM_CA_pel longevity, k, t0 

ZM_CA_dem longevity, k, t0 

Chen-Wat Age, k, t0 

Then_VBGF L∞, k 

Hamel_k k 

Jensen_k 1 k 

Jensen_k 2 k 

Gislason L∞, k, length 

Charnov L∞, k, length 

Pauly_lt L∞, k, Temp 

Roff k, age at maturity 
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Jensen_Amat age at maturity 

Ri_Ef_Amat age at maturity 

Pauly_wt W∞, kw, Temp 

McC&Gil dry weight, Temp 

PnW dry weight 

Lorenzen wet weight 

GSI GSI 

 526 

Table 2. Life history inputs for the two rockfish species used as example applications of the 527 

NMT. Values are taken from the U.S. west coast stock assessment for each species (Gertseva and 528 

Cope 2017; Monk and He 2019). 529 

 530 

  Yelloweye Gopher 

Longevity (years) 123 28 

L∞ (cm) 64.1 30.6 

K 0.65 0.1 

t0 (years) -1.22 -2.89 

Amaturity (years) 15.5 9 

Temperature (C
○
) 7 10 

Wet wt. (g) 5000 500 

 531 

 532 
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Figures 533 

A) Yelloweye rockfish 534 

 535 

B) Gopher rockfish 536 

 537 

 538 

Figure 1. Point (with 95% lognormal error bars; left column panels) and age-specific (right top 539 

and right bottom panels) estimates of M by method for yelloweye (top row) and gopher (bottom 540 

row) rockfishes. Colors in the point estimate panels refer to the life history parameters used in 541 

each estimator. 542 
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A) Yelloweye rockfish 544 

 545 

B) Gopher rockfish 546 

 547 

 548 

Figure 2. Weighted empirical M estimators with no additional variance using the default 549 

weightings (left column panels) and the final distribution with central tendency measures (right 550 

column panels) of M for yelloweye (top row) and gopher (bottom row) rockfishes. In the 551 

yelloweye rockfish example, the final distribution is composed of estimators applying longevity 552 

only; all other estimators are downweighted to 0. 553 

  554 
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A) Yelloweye rockfish 555 

 556 

B) Gopher rockfish 557 

  558 

Figure 3. Weighted empirical M estimators with additional variance (CV = 0.2) using the default 559 

weightings (left column panels) and the final distribution with central tendency measures (right 560 

column panels) of M for yelloweye (top row) and gopher (bottom row) rockfishes. In the 561 

yelloweye rockfish example, the final distribution is composed of estimators applying longevity 562 

only; all other estimators are downweighted to 0. 563 
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 565 

Figure 4. The reversion of M that invites inquiry. Using a tool like the NMT can turn the 566 

question mark into a species-specific estimate of M. 567 

 568 




